

Email Address: gtg@virginia.edu

George Gillies

Pick up Library: PHYS
University of Virginia
Alderman Library
Interlibrary Services
PO Box 400109
160 N. McCormick Road
Charlottesville, VA 22904-4109

Nuclear Physics at High Energies. Radioactivit

AD2. 50 Backward Elastic PD Scattering at $316,364,470$
and 590 MeV. C.F. PRPREISAT, J.C. ALDERT, W. DOLLITOPF

 Oxford $0 .-$ Protons from the exterral beam of the N.A.S.
Space Radiation Effects Laboratory were scattered on CD $_{2}$
tagets to measure the differential cross section for CN targets to meansure the Liblferentity were scattered on coss section for CM
angles from oo to 165°. The lower energies were obtained
and With copper degraders. in the tre transport system. Spark chan-
bers and scintillation counters were used to determine bers and scintillation counters were used to dotermine
the kinematics of each event. The time-of-flight of the
forward particle was recorded. For any given cM angle beforward particle was recorded. For any given cM angle be
tween 140 and 165° we observe very 11 tite change of the
CM cross section CM cross section at the three larger energies,
ment with a result by Booth ea. I at 415 Mev.

Fellows of the Swiss Institute for Nuclear Research (SID) Booth, Dolnick, Esterling, Parry, Scheid and Sherden,
preprint 1971.

AD3. PROTONS FROM 1.7 GEV/C n^{-}ON AG, BR. D. T. KING,

 and R1ins, Jung Lin* and J. H. Hamilton, Vanderbilt U.t
and R. R. Robinson, H. J. Kim and L. C. Ford, Oak Ridge and R. L. Robinson, H. J. Kim and L. C. Ford, Oak Ridge
Natt. Labt.-The reaction products from 42.5 and 46 MeV
160 ions on ${ }^{58} \mathrm{Ni}$ have been studied with Ge(Li) $($ singles $)$ 160 ions on ${ }^{58} \mathrm{Ni}$ i have been studied with ${ }^{\text {ne }}$ (ii) (singles)
and NaT -Ge(Li) (coincidence) detectors. The gamma-rays were assigned to a given decay frectors. The ganma-rays
and from a conparise infe information were assigned to a given decay from hatf-life informatio
and from a comparison of intenities at different bom-
barding energies. The following gamma rays are assigne barding energies 7_{2} The following gamma rays are assigned,
to the deceay of
$862(100), \quad 560(4), 752(4), 774(9)$, $862(100)$, $1137(9), 1317$ (25), and 1510(4), (reatative inten-
sities in parenthesis). From coincidence data the followities in parenthesis). From coincidence datat the follow-
ng levels are confirmed in ${ }^{7}$ Se Se $861,8,2^{+}$. $1317.1,2^{+}$; ing levels are confirmed in ${ }^{72}$ Se: $861.8,2^{+} ;{ }^{1317.1,,^{2}}$
$1626.1,4^{2} ;$ and 1998.5 kev . The half-1ife of ${ }^{72 \mathrm{Br} \text { is }}$ $2.4+1.0 \mathrm{se}$

* NSF Summer Research Participant from Tennessee Work supported in part by
Hork supported in part by a grant from the Nationa
Science Foundation
STResearch sponsored by the U. S. Atomic. Energy Conmission
under contract with Union Carbide Corporation

AD5. Investigation of Possible Perturbation of $v-r$ $\frac{\text { Directional Correlations. }}{\text { RAUF SARPER, J. T. CALIAHAM, }}$

AD6. $\frac{\text { Investigation of the Energy Levels in } 132 \text { xe Popu }}{\text { lated in }}$ N. C. Singhal, J.
lated in the Decay of 133 I,
Hamilton, A. V. Ramayya, vanderbilit University ${ }^{\text {and }}$, and

With the help of these measurements and energy sum relaassigned to the ${ }^{132}$ I decay into 38 excited states of In addition to the 20 energy levels reported earlier ave proposed 11 new levels (15 based on coincidence
with the forllowing energies (in kev); $2167.3+0.3 ; 218$
$2303.6 \pm 0.2 ; 2916.9 \pm$
 $3226.8 \pm 0.3 ; 323$
and $3385.1+0.7$.

Work supported in part by a grant from the National Sctence Foundation. under contract with Union Carbide Corporation.
J. H. Hamilton, H. K. Carter and J. J. Pinajian,
Rev. Cl 666 (1970). Rev. C1, 666 (1970)

AD7. . Electron Capture to Positron Emission Ratios for

${ }^{\text {ADB }}$. ${ }^{\text {for }}$ Neutron Capture Cross Sections in the keV Reoion A. K. Furr Virsinia Polytechnic lin Lita. FAnCET University. Virginia Polytectnic institute and Stat

AD9. $\frac{\text { Energy Spectra of Internal Bremsstrahlung }}{\text { mitted }}$ Emitted During the Beta Decay of 1 Bremsstran Carolina. I- The spectral distribution of inner bremsstrahlung emitted in the first forbidden
883 keV end point energy beta decay of 170 Tm 883 keV end point energy beta decay of 11709 T.
as been measured in a coincidence experime Recently, large high-energy anomali exses in severa first forbidden spectra have been reported
hese anomalies attributed to higher order lectrodynamic processes called detour transition ad are not evident in the present experimental
R.J.D. Beattie and J. Byrne, Nuclear Physics
Ai61 (1971) 650 .
${ }^{\text {AD } 10 . ~}{ }^{2}$. The Energy Levels of Pa^{233} from the A1pha Deca
 Carolina State University. -The alpha particie deay
Ni Np^{237} to Pa^{333} was investigated using high resolution
Si(Lii) and Ge(Lii) detectors, and Si surface barrier 1pha detectors. The resolution of sue the $S i(L i)$ detecto was 220 ev (FWHM) at 6.4 kev , and for the Ge(Li upon the results of several $\alpha-\gamma$ and dual parameter γ
coincidence experiments, a revised energy level cincidence experiments, a revised energy level sc
for Pa^{233} is suggested. The proposed decay scheme differs sisnificantly from previousiy published
results.

Invited Paper
AD11. Recent Experiments at the University of Maryland Cyclotron, PHILIP G
(30 min .)
(JOHN E. RIVES presiding)
ROOM 308 SESSION AE

Numerical Methods, Instrumentation, and Applications
 tained by polynomial least squares fitting have an inte
esting property that is not discussed in standard treat ments or numerical analysis. 1 suppose a set of data is
fitted to polynomials of degree 2 k and $2 \mathrm{k}-1$. If the fitted to polynomials of degree 2 k and $2 \mathrm{k}-1$. If the
derivatives of the fitted polynomials are evaluated a derivatives of the itted polynomiala a are evaluated at
the midpoint of the interval, they will be found to be equal, provided only that the data intervals are dis-
tributed symuntrically about the midpoint. The result
 sith a polynomial of degree $2 \mathrm{k}-1$. This property may
be understood from the decoupling of the equations be understood from the decoupling of the equation
for the expansion coefficients into tow subsets. for the expansion coeffricients into two subsets.
Profo of the property involves detailed examination
of cofactors and cramer's rule. The discussion of cofactors and cramer's rule. The discussion
Honudues several practical findings for the numerical niffuerentiation of data
IJ. J. White, III, Am. J. Physics 39 , November, 1971.
AE2. Tinitial Velocity of a Projectile
 pons Laboratory--Two methods have been
developed for calculating initial velocity from the gun and arrival at two to four spectified values of slant range. The first
nethod is based on the assumption that slant range is related to time of the projectile inge is related to time of the projectight by equations of the form
$=a t+b t^{2}+c t^{3}$ and $t=a S+b s^{2}+c s^{3}$
 given by a and $1 / a$, respectively. In the econd method, it is assumed that second third differences of sucessive values of
avergge rate of change of slant range are constant.
E3. Exact Computer Evaluation of Combinatorial Series Py Prime-Number Representations.** D.A. PAYNE and W. J.
HOMPSoN, U.N.C. at Chapel Hill and Triangle Universitie
 use floating-point arithmetic even when formulas involve
are epressible as fractions (as in combinatorial series
appearing in quantum statistictics or angular-momentum ppearing in quantum statistics or angular-momentum
heory). An alternative is prime-exponent arithmetic heory, . An alternative is prime-exponent arithmetic
(PRA), based on representation of rational numbers as Pron, based on representation of rational numbers as
prof in integer powers of primes. Such arithmetic is
especially useful when exact results are desired. In PEA especially useful when exact results are desired. In
(the Rotenberg form 1) the algorithms manipulate the the Rotenberg form ${ }^{1}$) the algorithms manipulate the
txponents of primes, rather than the rational numbers.
traction are more involved, but still exact. (Only inte-
gers are used.) The program language used for PEA is gers are used.) The program language used (important) is not important. As an example of PEA the 3 .- coefficients
have been progranmed in $\mathrm{mL} / 1$ and compared with floating-point-ari thmetic values.
*Research supported in part by the U.S.A.E.C. and by the
N.S.F. M. Rotenberg, R. Bivins, N. Metropolis and J. K. Wooten,
r., The 3-j and $6-1$ Symbols (M. I.T. Press, 1959).

$\frac{\text { Experimental }}{\text { Of A1abama, Birmingham }}$

AES. Magnetic Suspension Torsion Balance.* J. W. BeaMs,
Univ. of Virginia - Magnetically suspended rotors spinning Univ. of virginia--Magnetically suspended rotors spinning oossess almost negligible deceleration due to the magnetco support. 1 However, if while at rest, the rotor is
given a small angular displacement it usually will enounter a small restoring torque and oscillate. This is here shown to be due mostly to (1) the lack of coinci-
dence of the axis of permeability and the mechanical axis f the magnetically supported body as well as their Tight inclination to the vertical (2) to the lack of sym
metry of the supporting magnetic field and (3) disturbing magnetic fields including that of the earth. Methods are reatly reduced and effects of each of the above are post any desired value down to the noise level. This nakes possible the measurement of very minute torques
(10-9 to 10-10dyne-cm). Magnetic suspension torsion balances not only possess. extremely sumall restor ing torquas
but unlike fiber suspensions wili support large as well as small masses. Its unique advantages and uses will b discussed.
 J.W. Beams, D.M. Spitzer,
Si. Instr. 33 , 151 (1962).

AE6. $\frac{\text { Ultrahigh Vacuum Reflectometer }}{\text { II }}$

AE7. The Effect of Nonlinearities on the Diffraction . Alabama, 35809 .

bulletin
 OF THE AMERICAN PHYSICAL SOCIETY

Che Ameritan łphysical Society

MEMBERS OF THE COUNCIL FOR 1971

President

Vice-President Vice-President Elect Executive Secretary Treasurer
Editor-in-Chief

ROBERT SERBER

P. M. MORSE JOSEPH E. MAYER W. W. HAVENS, JR. J. A. BURTON
S. A. GOUDSMIT

Columbia University
Massachusetts Institute of Technology University of California, San Diego Columbia University Bell Telephone Laboratories Brookhaven National Laboratory

Past Presidents now on the Council: Luis W. Alvarez, John Bardeen, Edward M. Purcell.
Councillors at Large: Walter Kohn, T. Lauritsen, B. N. Brockhouse, R. H. Dicke, F. J. Dyson, V. W. Hughes, L. Esaki, H. L. Morrison, S. Weinberg.

Divisional Councillors: C. Hutchison, Jr. (Chemical), B. Rossi (Cosmic), R. Geballe (Electron and Atomic), F. N. Frenkiel (Fluid Dynamics), W. P. Slichter (High Polymer), J. L. Fowler (Nuclear), J. Sandweiss (Particles and Fields), Melvin Gotlieb (Plasma), and J. A. Krumhansl (Solid State).

Council Advisers: K. K. Darrow, Secretary Emeritus; S. L. Ouimby, Treasurer Emeritus. Regional Secretaries: M. Peshkin (Central States); W. Whaling (Western States); J. Phillips (Southwest and Mountain States): L. W. Seagondollar (Southeastern States); H. Wm. Koch (American Institute of Physics).

rebruary 1972
 BULLETIN OF THE AMERICAN PHYSICAL SOCIETY fible of Contents

dwards of Prizes by The American Physical Society. 182
Special Announcement: Proposed Amendment to the Constitution 182
winutes of the Fall Meeting of the Ohio Section 184Main Tex
Index. 187
Rnutes of the 38th Meeting of the Southeastern Section 188
spito Text.207
Index.
209
nnouncements of General Meetings N.J.) 209
1972 June Meeting in the Southwest (Albuquerque, N. M.). 209
mouncements of Divisional Meetings

1972 Regular Meeting of the Division of High-Polymer Physics (Atlantic City, N.J.)211
Announcements of Sectional Meetings 1972 Spring Meeting of the New England Section (Boston, Mass.) 212
1972 Spring Meeting of the New York State Section (Poughkeepsie, N. Y.)

$$
\begin{aligned}
& 1972 \text { Spring Meeting of the New York State Section (Poughl } \\
& 1972 \text { Spring Meeting of the Ohio Section (Columbus, Ohio) }
\end{aligned}
$$212

Amnouncements of Topical Conferences
32nd Annual Physical Electronics Conference (Albuquerque, N. M.)
32nd Annual Physical Electronics Conference (Albuquerque, N.M.) 213
Conference on the Physics of IV-VI Compounds and Alloys (Philadelphia, Pa.) . . . 213
Sixth Low-Energy Electron Diffraction Seminar (Washington, D.C.).214

1972 Applied Superconductivity Conference (Annapolis, Md.) 214
First International Conference on Modulation Spectroscopy (Tucson, Ariz.) 215
Revised Rules and Regulations for the Preparation of Abstracts for Direct 216
Reproduction
Hotel Reservation Forms
1972 March Meeting, Atlantic City, New Jersey.
The BULLETIN of The American Physical Society is published 13 times a year (monthly except twice in December). Correspondence should be addressed to The American Physical Society; 335 East 45 Street, New York, N. Y. 10017.
Subscription price: Domestic: $\$ 16.00$ per year, Foreign: $\$ 17.50$ per year Back-number prices: $\$ 8$ for the Membership List; $\$ 2$ for other issues HOW TO OBTAIN PREPRINTS OF PAPERS
The "abstracts" in this BULLETIN are not the abstracts of written texts of which we have the originals. These are the abstracts of speeches that of which we have the originals. These are the abstracts of speeches that
are delivered at meetings of the Society. We have no texts, and those who are delivered at meetings of the Society. We have no texts, and those who
wish more information than an abstract contains must write directly to wish more
the author.

221
1972 April Meeting, Washington, D. C.
Inside Back Cover

